Разница между гетеротрофами и автотрофами

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1887 году русским учёным С. Н. Виноградским.

Введение

В средние века бельгийский естествоиспытатель Ян ван Гельмонт провел опыт. Он посадил побег ивы в кадку с землёй, предварительно взвесив побег и землю.

У него получилось, что веточка ивы весит 2,5 кг, а земля 90,6 кг.

В течение пяти лет он поливал растение чистой дождевой водой.

Ученый взвесил иву через пять лет и обнаружил, что её вес увеличился на 74,2 кг, а вес земли уменьшился всего на 56,6 г.

Откуда растение добыло 74,2 кг своей массы?

Ян ван Гельмонт объяснил результат эксперимента исключительно поглощением воды.

Так возникла водная теория питания растений, которая в последующем была опровергнута.

Сегодня на уроке мы рассмотрим причину прибавления веса растений и увидим, почему Ян ван Гельмонт был неправ в своем выводе.

Введение

Автотрофы: особенности, свойства и характеристики организмов

К автотрофам относят (от αὐτός – сам + τροφή – пища) организмы, которые способны самостоятельно синтезировать органические вещества (белки, жиры и углеводы) из неорганических – углекислого газа (СО2), воды (Н2О), минеральных солей. Главная их особенность заключается в автономности и независимости от других организмов (гетеротрофов или миксотрофов). В число автотрофных организмов входят многие зеленые растения, водоросли и некоторые бактерии.

Основные свойства:

  • поглощать солнечную энергию;
  • выделять кислород;
  • перерабатывать углекислый газ.

Характерные особенности автотрофов:

  1. Неподвижность. Растениям и простейшим нет необходимости в передвижении: получать «пищу» они могут в любом месте при наличии освещенности и влаги.
  2. Простое строение (по сравнению с гетеротрофами). Автотрофные организмы не имеют органов для добычи и переработки пищи: желудка, лап, челюстей и мощных зубов, кишечника. Также у них отсутствуют мозг и рефлексы, необходимые для выживания.
Читайте также:  Гангрена нижних конечностей — лечение гангрены стопы

Определение хемосинтеза

Хемосинтез – это совокупность реакций синтеза органических веществ из неорганических с использованием энергии химических реакций, которая выделяется во время преобразования неорганических соединений. Характерен только для бактерий: нитрифицирующих, бесцветных серобактерий, железобактерий и т. п.

Нитрифицирующие бактерии окисляют аммиак до нитритов, а потом – до нитратов. Бесцветные серобактерии окисляют сероводород и прочие соединения серы до серной кислоты. Железобактерии принимают участие в образовании залежей железных руд, окисляют соединения двухвалентного железа до трехвалентного.

Исключительную роль играют хемосинтезирующие бактерии в процессах преобразования химических элементов в биогеохимических циклах (круговороте веществ).

Похожие материалыКлеточный уровеньУровни организации живого

Хемосинтез

Хемосинтез — древнейший тип автотрофного питания, который в процессе эволюции мог появиться раньше фотосинтеза. В отличие от фотосинтеза при хемосинтезе первичным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

Хемосинтез наблюдается только у ряда прокариот. Многие хемосинтетики обитают в недоступных для других организмов местах: на огромных глубинах, в бескислородных условиях.

Хемосинтез в каком-то смысле уникальное явление. Хемосинтезирующие организмы не зависят от энергии солнечного света ни напрямую как растения, ни косвенно как животные. Исключением являются бактерии, окисляющие аммиак, т. к. последний выделяется в результате гниения органики.

Сходство хемосинтеза с фотосинтезом:

  • автотрофное питание,
  • энергия запасается в АТФ и потом используется для синтеза органических веществ.

Отличия хемосинтеза:

  • источник энергии – различные окислительно-восстановительные химические реакции,
  • характерен только для ряда бактерий и архей;
  • клетки не содержат хлорофилла;
  • в качестве источника углерода для синтеза органики используется не только CO2, но также окись углерода (CO), муравьиная кислота (HCOOH), метанол (CH3OH), уксусная кислота (CH3COOH), карбонаты.

Хемосинтетики получают энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитрита и др. Как видно, используются неорганические вещества.

В зависимости от окисляемого субстрата для получения энергии хемосинтетиков делят на группы: железобактерии, серобактерии, метанообразующие археи, нитрифицирующие бактерии и др.

Читайте также:  Корь. Причины, симптомы и лечение кори

У аэробных хемосинтезирующих организмов акцептором электронов и водорода служит кислород, т. е. он выступает в роли окислителя.

Хемотрофы играют важную роль в круговороте веществ, особенно азота, поддерживают плодородие почв.

Представители железобактерий: нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы.

Распространены в пресных и морских водоемах. Образуют отложения железных руд.

Водный сток с железобактериями

Окисляют двухвалентное железо до трехвалентного:

4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

Кроме энергии в этой реакции получается углекислый газ, который связывается в органические вещества.

Кроме бактерий окисляющих железо, существуют бактерии окисляющие марганец.

Серобактерии

Серобактерии также называются тиобактериями. Это достаточно разнообразная группа микроорганизмов. Есть представители получающие энергию как от солнца (фототрофы), так и путем окисления соединений с восстановленной серой – пурпурные и зеленые серобактерии, некоторые цианеи.

2S + 3O2 + 2H2O → 2H2SO4 + E

В анаэробных условиях в качестве акцептора водорода используют нитрат.

Бесцветные серобактерии (беггиаты, тиотриксы, ахроматиумы, макромонасы, акваспириллюмы) обитают в содержащих сероводород водоемах. Они 100%-ые хемосинтетики. Окисляют сероводород:

Хемосинтез

2H2S + O2 → 2H2O + 2S + E

Образующаяся в результате реакции сера накапливается в бактериях или выделяется в окружающую среду в виде хлопьев. Если сероводорода недостаточно, что эта сера может также окисляться (до серной кислоты, см. реакцию выше).

Вместо сероводорода могут также окисляться сульфиды и др.

Нитрифицирующие бактерии

Типичные представители: азотобактер, нитрозомонас, нитрозоспира.

Нитрифицирующие бактерии обитают в почве и водоемах. Энергию получают за счет окисления аммиака и азотистой кислоты, поэтому играют важную роль в круговороте азота.

Аммиак образуется при гниении белков. Окисление бактериями аммиака приводит к образованию азотистой кислоты:

2NH3 + 3O2 → HNO2 + 2H2O + E

Другая группа бактерий окисляет азотистую кислоту до азотной:

2HNO2 + O2 → 2HNO3 + E

Две реакции не равноценны по выделению энернгии. Если при окислении аммиака выделяется более 600 кДж, то при окислении азотистой кислоты – только около 150 кДж.

Азотная кислота в почве образует соли — нитраты, которые обеспечивают плодородие почвы.

Читайте также:  Можно ли беременным делать прививку от гриппа

Водородные бактерии

В основном распространены в почве. Окисляют водород, образующийся при анаэробном разложении органики микроорганизмами.

2H2 + O2 → 2H2O + E

Данная реакция катализируется ферментом гидрогеназой.

Метанобразующие археи и бактерии

Типичные представители: метанобактерии, метаносарцины, метанококки.

Археи строгие анаэробы, обитают в бескислородной среде.

Хемосинтез идет без участия кислорода. Чаще всего восстанавливают углекислый газ до метана водородом:

CO2 + 4H2 → CH4 + 2H2O + E

plustilino © 2019. All Rights Reserved

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Фотодыхание

Интересный факт: в течение солнечного дня участок леса площадью 1 гектар потребляет от 120 до 280 кг углекислого газа и выделяет от 180 до 200 кг кислорода.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Устьица растения

Сравнение

В таблице «Автотрофы и гетеротрофы» приведены сравнительные характеристики двух типов питания.

Признак

Автотрофы

Гетеротрофы

Звено пищевой цепочки

Продуценты

Консументы, редуценты

Способ получения органических веществ

Фотосинтез, хемосинтез

Потребление других организмов

Источник энергии

Солнечный свет, окисление неорганических веществ

Готовые органические вещества, в первую очередь углеводы и жиры

Некоторые организмы практикуют оба вида питания и называются миксотрофами. К ним относятся моллюск восточная изумрудная элизия, эвглена зелёная.